PHYSICAL REVIEW E

VOLUME 51, NUMBER 6

JUNE 1995

Dilution in a linear neural network

D. M. L. Barbato and J. F. Fontanari
Instituto de Fisica de Sdo Carlos, Universidade de Sdo Paulo, Caiza Postal 369, 18560-970 Sao Carlos, Sdo Paulo, Brazil
(Received 28 November 1994; revised manuscript received 13 March 1995)

The effects of elimination of synaptic weights on the learning capability of a single-layer, feed-
forward neural network composed of linear neurons are investigated within the equilibrium statistical
mechanics framework of Gardner and co-workers [J. Phys. A 21, 257 (1988); 21, 271 (1988)]. A
comparison between the performances of networks damaged by different types of dilution, which may
occur either before or after the learning stage, shows that the strategy of minimizing the training
error does not yield the best generalization performance. Moreover, this comparison also shows that,
depending on the size of the training set and on the level of noise corrupting the training data, the
smaller weights may become the determinant factors in the good functioning of the network. In
particular, the larger the level of noise, the more important the contribution of the smaller weights

to the generalization capability of the network.
PACS number(s): 87.22.Jb, 02.70.—c

I. INTRODUCTION

The main purpose of the study of dilution in artificial
neural networks is the modeling and understanding of the
effects of lesions in systems capable of learning. From
both biological and psychological viewpoints, this enter-
prise is justified by the claim that the comparison be-
tween the behavioral patterns of damaged artificial neu-
ral networks and injured biological brains may elucidate
the underlying mechanisms of functioning of the brain [1,
2]. From a more applied viewpoint, however, the study
of lesions in artificial neural networks is attractive by it-
self, being important not only to probe the reliability of
the system when partially damaged but also to single out
its essential components that should be protected from
damage. This is the trend we follow in the present pa-
per, although the diverse types of lesions we consider are
biologically motivated.

The neural network we consider in this paper is a
single-layer, feed-forward neural network whose basic
processing units (neurons) are linear elements. The so-
called linear perceptron is probably the simplest non-
trivial model of a learning system that can be solved
exactly, either by a statistical dynamical approach [3]
or by the equilibrium statistical mechanics framework of
Gardner [4, 5] within the simplifying replica-symmetric
assumption [6]. We work within the student-teacher sce-
nario, which is the paradigm of the statistical mechanics
approach to the problem of learning from examples in
neural networks [7-9]. In this scenario, the input-output
mapping or task in which the network is trained is gener-
ated by another neural network, not necessarily with the
same architecture, termed the teacher network. The net-
work trained to realize a subset of that mapping (training
set) is termed the student network. In this study, both
networks are linear perceptrons though only the student
network is diluted. The task becomes then unrealizable
as the computational power of the student network is
insufficient to perfectly learn the rule supplied by the
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teacher. In fact, in this case there exists a finite training
set size (storage capacity) beyond which the error made
by the student perceptron in realizing the training set
(training error) no longer vanishes.

Diluting or lesioning a neural network by cutting a cer-
tain fraction of its synaptic weights can be done by sev-
eral ways. First, the lesion can occur before the learning
process takes place. There are then two possibilities: the
learning procedure specifies which weights must be elim-
inated so as to minimize the effect of the lesion on the
training error, or the deleted weights are specified a pri-
ori without the possibility of changes during the learning
stage. The first possibility is termed annealed dilution
while the second is termed quenched dilution. Second,
the lesion occurs after the learning stage has finished. In
this case we consider three possibilities: only the smaller
weights are eliminated, only the larger weights are elim-
inated, and the weights are eliminated randomly, inde-
pendently of their magnitudes. Of course, the fraction
of deleted weights is the same in all cases. The main
goal of this paper is to compare the effects of these dif-
ferent types of dilution on the learning capability of the
neural network. A remarkable by-product of this com-
parison is the result that the generalization performance
obtained with the annealed dilution is not optimal, be-
ing overcome by the deletion of the smaller weights after
learning. This is probably the simplest example where,
even in the absence of any type of noise, the widespread
strategy of optimizing the performance in the training
set aiming at optimizing the generalization performance
is not optimal.

Besides dilution, we also investigate the effects of static
noise corrupting the input patterns presented to the stu-
dent perceptron. In fact, there is evidence that dilution
and noise may produce similar results. In particular, it
was shown that the main effect of quenched dilution in
a Boolean binary perceptron is to introduce an effective
noise in the training patterns [10]. Moreover, some stud-
ies of lesions in perceptrons were carried out by adding

6219 ©1995 The American Physical Society



6220

a static noise term to the internal fields of the neurouns,
rather than explicitly cutting synaptic weights [11]. We
note that, similarly to dilution, the noise corrupting the
input patterns makes the task of learning the training set
unrealizable to the student perceptron.

The problem of learning unrealizable rules with real-
weights Boolean perceptrons cannot be carried out within
the replica-symmetric framework, because it yields lo-
cally unstable solutions for training set sizes larger than
the storage capacity of the network. The exact solu-
tion to this problem is notoriously difficult since it de-
mands the application of the full replica-symmetry break-
ing scheme of Parisi [12,13] (see [14, 15] for an application
of the first step of Parisi’s scheme to this type of neural
network). Nevertheless, the effects of noise [8] and dilu-
tion before learning [16] in the real-weights Boolean per-
ceptron beyond its storage capacity were studied within
the replica-symmetric assumption in the hope of obtain-
ing a solution that might have at least the value of an
approximation. This situation contrasts with that of
the linear perceptron, for which the replica-symmetric
assumption always yields locally stable solutions. The
linear perceptron appears then as the sole real-weights
neural network for which a study of unrealizable tasks
can be fully and reliably carried out.

Dilution in neural networks was first considered in the
context of the associative memory model proposed by
Hopfield [17]. In this model all the memory patterns are
embedded in the network at once through the Hebbian
prescription for the synaptic weights. The equilibrium
analysis of the retrieval properties of the randomly di-
luted Hopfield model, in the case that the connectivity
of the network is of the same order of the number of
neurons N, was carried out by Sompolinsky [18,19]. It
was shown that the effect of dilution is to add a Gauss-
ian noise to the Hebbian synaptic weights: the larger the
degree of dilution, the larger the noise. In a remark-
able contribution, Derrida et al. [20] have solved analyt-
ically the dynamics of the Hopfield model in the limit of
extreme dilution, i.e., when the connectivity is of order
In N. It was found, however, that the degree of dilution
or the connectivity parameter simply rescales the number
of neurons, being of no importance to the retrieval prop-
erties of the network. In these studies there was no need
to distinguish between dilution before or after learning
since the Hebbian rule is purely local.

The seminal paper of Gardner [4] has deviated the at-
tention from the Hopfield model to the neural network
with optimal weights. Similarly to the Hopfield model,
the dynamics of the optimal attractor neural network
was solved analytically in the limit of extreme dilution
[21]. The effect of dilution on the retrieval of hierar-
chically organized memories was also considered in this
context [11,22]. As the framework of Gardner readily
applies to the study of the learning capabilities of per-
ceptrons, the effect of dilution on the storage capacity of
the Boolean perceptron was investigated by Bouten et al.
[23], from whom we have borrowed the terms annealed
and quenched. More recently, Kuhlmann and Miiller [16]
have considered the effect of dilution on the generaliza-
tion performance of the Boolean perceptron. However, as
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mentioned before, the instability of the replica-symmetric
ansatz employed in their analysis renders their results
rather doubtful. The emphasis of these studies was on
dilution before learning.

In the present paper, emphasis is given to the study
of dilution after learning. This type of dilution is useful
to identify the components whose destruction may affect
more severely the performance of the network. More-
over, while previous studies have dealt mainly with the
effect of dilution on the retrieval properties of attrac-
tor neural networks [18-20] or on the storage capacity
of the Boolean perceptron [23], we focus mainly on the
generalization performance of the linear perceptron. In
particular, we have found that for 2 — 1/92 < a < 1/4%,
where o and v are parameters measuring the training
set size and the level of noise, respectively, the general-
ization performance is more sensitive to the deletion of
the smaller weights. Moreover, for o within that range,
we have found that the diluted network generalizes bet-
ter than the nondiluted one. This finding lends support
to the often employed strategy of deleting weights after
learning in order to decrease overfitting in the case of
training with noisy data.

The remainder of the paper is organized as follows. In
Sec. II we describe the architecture of the linear per-
ceptron and define the quantities employed to measure
its performance. Section III is devoted to the study of
the case when dilution occurs before the learning process
takes place and Sec. IV to the case when dilution occurs
after the learning stage has finished. The results are then
compared and analyzed in Sec. V. Finally, in Sec. VI we
present some concluding remarks.

II. THE MODEL

The neural network we consider in this paper consists
of N binary input units S; = £1 (¢ =1,...,N), N real-
valued synaptic weights J; (¢ = 1,...,N) and a single
linear output unit

N
1
o= —= J; S;. 2.1
The task of the student perceptron is to realize the map-
ping between the 2V possible input configurations {£}
and their respective outputs {¢} generated by the teacher
perceptron

1 N
_ E O¢.
= \/—-N panr Jz gu (2'2)

where the weights J? (i = 1,...,N) are statistically in-
dependent random variables of zero mean and variance
M. The specific probability distribution is not important
because only the first two moments enter the calculations
presented in the next sections. To achieve its task, the
student network is trained with P = aN input-output
pairs (§l,t’) (I=1,...,P) where t is the teacher’s out-
put to input f ! and each component S! is drawn from
the conditional probability distribution
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p(stgh =110 a(si- )+ ST d(slre)  (23)

with
PEl) = § 68 ~1)+} 5(€ +1).

Thus, not only the student network has access to a very
small fraction of the total number of input-output pairs
of the mapping as its input patterns S' = (S{, e ,va)

(2.4)

are noisy versions of the pure patterns f’ = ({{, .. ,{fv)
The noise parameter v € [0,1] determines the Hamming
distance between these two patterns. In particular, y =1
characterizes the problem of learning from pure (noise-
less) examples, while v = 0 is the random mapping prob-
lem. Actually, the study of the case v = 0 was carried out
recently in a rather different context: it is the classical
combinatorial optimization problem of finding the mini-
mum weight solution, i.e., the solution with the minimum
number of nonvanishing entries, to randomly generated
linear equations [24, 25].

The learning process consists of a search for the global
minima of the training energy, defined as

1 il 2
E({I} =5 Y (-, (2.5)
=1

where o' = o({J;}, §') is the student’s response to noisy
input 5! and t! is the teacher’s output to pure input pat-
tern é' !, The training energy is then a measure of the
performance of the network in realizing the P = aN
input-output pairs of the training set. The storage ca-
pacity a. is defined as the ratio between the maximal
training set size that the network can realize perfectly
and the number of input neurons N.

The ultimate goal of the learning process is to generate
a network capable of realizing correctly an input-output
pair not belonging to the training set. To measure this
capability we introduce the generalization function

B, (5D = 5 [ () (t-o((73.9)
where

dv(§) = Hdgidsip(si | &)P(&)

(2.6)

(2.7)

is the measure in input space. Here o is the student’s
response to noisy input S and t is the teacher’s output
to the randomly chosen pure input pattern é‘ In the
thermodynamic limit N — oo the integrations in Eq.
(2.6) can be easily carried out yielding

E,({J:}) = 3 (Q+ M —29R), (2.8)

where Q is the squared norm of the student perceptron

1 N
Q:‘N“Z‘Iiza

R is the overlap between student and teacher,

(2.9)

1
— 0
R=— § TP, (2.10)

and M is the squared norm of the teacher perceptron

1 N 2

Due to the self-averaging property [12, 13], M coincides
with the variance of the random variable J? in the ther-
modynamic limit. For a more thorough discussion of the
problem of learning from examples in neural networks we
refer the reader to Refs. [8,9].

As the focus of this paper is the equilibrium proper-
ties of the ensemble of weights that minimize the training
energy, Eq. (2.5), we can directly apply the standard sta-
tistical mechanics techniques to characterize its ground
states (global minima). In particular, the appropriately
normalized average training error is given by

(2.11)

_1 .. 8(Bf)
where f is the average free-energy density
. 1
pf = Jim + (lnZ) (2.13)
and Z is the partition function
Z =Tr exp[-BE ({J:})]. (2.14)

The notation {()) stands for a quenched average over the
statistically independent random variables St ¢, and
J?, while Tr indicates an integration over all allowed
configurations {J;}. Such configurations must satisfy a
normalization constraint, Eq. (2.9), and a dilution con-
straint, namely, that {J;} possesses only xN nonvanish-
ing components. The specific way these constraints are
implemented depends on the type of dilution considered.
There are, however, some general remarks we can make
about the normalization constraint. In contrast with the
real-weights Boolean perceptron for which the value of Q
is irrelevant, the choice of the normalization is germane
to the thermodynamic analysis of the linear perceptron:
Q must be chosen so as to minimize €; [6]. In the regime
a < a., where there are an infinity of values of @ that
yield ¢, = 0, we will choose the smallest one that corre-
sponds then to the solution of minimal norm, so-called
pseudoinverse [26].

The average generalization error is similarly defined as

€g = ﬂli_{rolo << (Eg ({:}) )r >> ) (2.15)

where (), stands for a thermal average taken with the
Gibbs probability distribution exp (—BF) /Z. The zero-
temperature limit (3 — oco) ensures that only configura-
tions that minimize the training energy will contribute
to this average.

The main technical difficulty in carrying out the calcu-
lations delineated above is the evaluation of the quenched
average in Eq. (2.13). This can be accomplished by the
replica method which consists of using the identity
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.1 n

(nz) = lim ~In(2"), (216)
evaluating {( Z™ )) for integer n and then analytically con-
tinuing to n = 0. As for the quenched average in Eq.
(2.15), it can be evaluated in a similar way by adding
the term hE, ({J;}) to the training energy E ({J;}) and
then calculating the resulting average free energy. The
derivative with respect to the auxiliary field h taken at
h = 0 will give the desired result.

III. DILUTION BEFORE LEARNING

In this section we discuss the case when the lesion oc-
curs before the learning process takes place. The two pos-
sibilities we consider in the following are inspired by the
clinical observation of patients who received severe injury
to only one of the brain’s hemispheres [27]. If the patient
is at an early enough age, the other side of the brain can
take over, compensating for the damage. This flexibility
is modeled by the annealed dilution, which leaves to the
learning process the decision of which weights to cut in
order to attenuate the effect of the lesion on the training
error. In this sense, this dilution process depends on the
particular realization of the training set. As the brain
grows older, it looses the flexibility and the lesion is best
described by the quenched dilution, where the deleted
weights are chosen randomly and held fixed during the
learning stage.

A. Annealed dilution

In this case we define a new set of real-valued weights
{W;} so that J; = ¢;W; (i = 1,...,N) where the bi-
nary variables ¢; = 0,1 are needed to enforce the correct
degree of dilution

1 N
NECi_R.

In terms of these new variables the training energy is
rewritten as

(3.1)

P

N 2
E. ({W:},{c:}) = % > (t’ - ﬁ ZciWiSf) .

=1 =1
(3.2)

The minimization of E. involves then a simultaneous
search in the discrete space of ¢; and in the continuous
space of W;. The search in the discrete space is the main
reason why the statistical dynamics approach [3] is not
well suited to the analysis of this problem. The partition
function Eq. (2.14) becomes

Z:ZJK'(ZQ’K/N) /oo HdW,
@ i Btk

x exp [-BE. ({W:},{c})],

where dk, is the Kronecker delta. To avoid divergences
when carrying out the integrals over W; we must impose
two normalization constraints,

(3.3)

1 N
Q=5 D aW! (3.4)
i=1
and
1 N
Q° = ¥ > (- W, (3.5)
=1

which guarantee the convergence of all integrals. Note
that constraint (3.4) is identical to constraint (2.9) since

¢? = ¢;. Clearly, our results must not depend on Q° as it

is the squared norm of the subset of weights that do not
contribute to the training energy.

The calculation of the average free-energy density Eq.
(2.13) in the thermodynamic limit is standard [4, 5] so
we present the final result only,

1 n
_ ann _ 1; - _ ~
Bf 1111m0 ext " { E<b Qab Gab

+ (Kéa+Q°Q% — 3QQq — RR.)

+G0(qAaba éaa Qaa ) 27 Ra) + aGl (Qaby Ra) }a
(3.6)
where

Go=1n Z /H dW“exp{—Z [éac®

{ca :0,1} a=1 a

+Qa(1 — ¢ (W*)? — §Qac™(W?)?]

+ D RWAT+ Y Gap O W“W”} (3.7)

a<b

and

n da n
Glzln/I:Il \/Z_ﬂ_ exp{-—%2y2[1+,@(Q+M

—2YRa)] = B D Yays(qar + M — 27Ra)}. (3.8)
a<b
The extremum in Eq. (3.6) is taken over all saddle-point

parameters (60., un,ba Qa» an Ra» dab, Ra)-
order parameters

The physical

N
1
Gab = 3 Zch?Wi“Wib, a<b (3.9)
i=1
and
1 X
Ro= 5 > WY (3.10)

=1

measure the overlap between two different global minima
{J#} and {J?}, and the overlap between the global min-
imum {J} and the teacher network {J?}, respectively.
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The search for the extremum of f*"" will be restricted
to a very particular subspace — the replica-symmetric
subspace — where the values of the saddle-point param-
eters are independent of their replica indices: gz = g,
dab = ¢ Va < b and similarly for ¢é,, Qa, R,, Ra, and
QO Although this ansatz is clearly correct for parame-

J

—Bferm =194 - 1QQ + Q°Q° — RR -1

aﬁq+M—2fyR

In QO +ké + =

ters that possess only one replica index [12], its use for
parameters that possess two replica indices must be justi-
fied by a stability analysis. Evaluation of Egs. (3.7) and
(3.8) with the replica-symmetric ansatz is straightfor-
ward, resulting in the following expression for the replica-
symmetric average free-energy density:

ln2+1ln1r——ln[1+,8(Q q)]

/Dm{

21+6(Q-q)

where Dz = dz/+v/2mexp(—22/2) is the Gaussian mea-
sure. We have introduced the parameter & = é— 11n2Q°

which allows for the complete decoupling between QO and
the remaining saddle-point parameters which are relevant
to the characterization of the ground states. The replica-
symmetric saddle-point parameters (¢, q,Q Q R, q,R)
are obtained by extremizing f2"" which gives rise to
a set of six coupled equations, as the equation for Q°
does not involve the other parameters. To take the zero-
temperature limit, one must be careful to distinguish be-
tween two regimes that arise naturally from the analysis
of the average training error, Eq. (2.12), which within
the replica-symmetric assumption is given by

L M+Q-2R+8(Q~-0)°
[1+8(Q-a)

The first regime of interest, characterized by a nonzero
training error, occurs only if ¢ — @ so that z = 3(Q —q)
is finite. In this regime and choosing @ so as to min-
imize f2*", which contributes with an additional equa-
tion 8f™ /8Q = 0, the task of solving the saddle-point
equations is greatly simplified resulting in the following

expressions for the relevant order parameters:

ann
€ = l
t B—ooo 2

(3.12)

Ay
= 3.13
P (3.13)
MA
=Q = < 1 —2A, 3.14
7=Q a_AK[+7(a )] (3.14)
and
R = M~yA,, (3.15)
where
Ap = 2/ Dz 2® (3.16)
A
and )\, is the unique solution of
K=2 Dz. (3.17)
Ar

Hence the average training error becomes

wm—6+2(m+MRVﬂq—QH}, (3.11)
i-Q
[
€™ /M = % (1—~%Ak) (1 - %) , (3.18)

from which we conclude that the regime of nonzero train-
ing error occurs for @ > a2 = A,. The dependence
of a2™™ on the connectivity parameter « is depicted in

Fig. 1. Note that A, > k for all kK and A; = 1. For
a > a%™™ the average generalization error is given by
1 o (1 — 'YZAR)

o IM = — —————~ 3.19

g/ 5 o AL (3.19)
which, in the limit of large o, can be rewritten as

A _

€™ /M = 1 (1 —~%A) (1 + ;‘) +O0(a™?). (3.20)

To investigate the second regime of interest, character-
ized by a vanishing training error, we must first solve the
saddle-point equations for Q fixed a priori. The strategy
of determining Q by minimizing the free energy with re-
spect to this parameter fails in this case because, at zero
temperature, there are an infinity of values of Q consis-

0.0 T T T T —t
0.0 0.2 0.4 0.6 0.8 1.0
g
FIG. 1. Storage capacity a. of the linear perceptron as a

function of the connectivity & for the annealed dilution (solid
curve) and the quenched dilution (broken curve).
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tent with ™™ = 0. More specifically, the analysis of the
solution of the saddle-point equations for fixed @ shows
that any Q > QF, where

p_M a(l—9%)

Q 2 A, —«a

, (3.21)
yields €™ = 0 for a < a2™™ (see [6] for a similar but
more detailed analysis for the nondiluted problem). The
choice Q@ = QF corresponds to the pseudoinverse solu-
tion [26]. Within this framework we find ¢ = Q¥ and
R = M~a. Although the training error is zero, the gen-
eralization error does not vanish, being given by
1 Ay —72a(2A, — @)
ann M - = K K .
‘g / 2 A, —«a
To conclude the analysis of the annealed dilution we
discuss the stability of the replica-symmetric ansatz em-
ployed in the calculation of the average training and gen-
eralizations errors. The condition for the local stability
of this ansatz is given by [28]

(3.22)

ayey1r < 1, (323)

where o and <y; are the transverse eigenvalues of the
matrices of second derivatives of Go and G; with respect
t0 §ap and ggp, respectively. Following the analysis of Ref.
[5] we find that this condition reduces to

Ec1  if a>A, (3.24)
(o]

and
aK X

which are always satisfied since A, > k as shown in
Fig. 1. It is interesting to note that both the storage
capacity a2™" and the local stability conditions do not

depend on the noise parameter +.

B. Quenched dilution

Since in this case the (1 — k)N deleted weights are
chosen randomly, we canset J; =0 (¢ = «N +1,...,N),
without lack of generality, so as to automatically satisfy
the dilution constraint. In fact, an explicit calculation of
the distribution of probability of a given weight, say J;,
taking on the value J shows that this distribution is a
Gaussian of zero mean and variance @, discarding thus
the existence of a singularity at J = 0 [6]. As the binary
auxiliary variables c; are no longer necessary to enforce
the dilution constraint, the calculation of the average free
energy is much simplified for the quenched dilution. Sim-
ilarly to the analysis of the annealed dilution, we find

. 1 - R D A .
_ﬂfq = 1];'% ext; {_ Z dab Gab — Z(EQQa + RaRa)

a<b a
+K GO(Qaba QavRa) + aGl (qab,Ra)}y (326)

where

Gozln/ﬁ dJ“exp{%i Qa(J*)? + D RoJ*J°
a=1 a a

+ ) dab J“Jb} (3.27)

a<b

and G; is given in (3.8). Using the replica-symmetric
ansatz yields

~ A S K a
-B gszéqq——%QQ—-RR—{—EIDZW—Eln[l"i‘ﬂ(Q

aBq+ M —2yR & . oA
-0l 5 Tsa—g "3 219
K g+ ME? (3.28)
2 ¢-@Q

The average training error is again given by Eq. (3.12),
except that now the saddle-point parameters ¢, Q, and
R extremize the free energy (3.28). Solving the saddle-
point equations in both regimes ¢; > 0 and ¢; = 0, follow-
ing the same procedure used before, we find a strikingly
formal similarity between the equations describing the
equilibrium properties of the annealed and quenched di-
lutions. More specifically, to obtain the physical saddle-
point parameters as well as the average training and gen-
eralization errors for the quenched dilution we must only
replace A, by  in the corresponding equations of the
annealed dilution. In particular, the storage capacity of
the quenched diluted network is a? = « while, for o > &,
the average training and generalization errors are given

by

/M =5 (1-+%)(1-%) (3.29)
and
1 a(l—92k)
a/pf=- N T 3.30
</ 2 a—-rk (3:30)
respectively. For a < k we find € = 0 and
1 k—7v2a (26 —
ap=trmreioe) (3.31)

2 K—a
The formal similarity between the equations describing
the annealed and quenched dilutions is probably a pecu-
liarity of the linear perceptron, since an equally thorough
comparison between these two types of dilutions in the
Boolean binary perceptron has not indicated anything of
this sort [10].

We have also verified that the replica-symmetric ansatz
is locally stable, in the sense of satisfying inequality
(3.23), for all values of the control parameters «, v, and
K.

IV. DILUTION AFTER LEARNING

We consider now the more interesting problem when
the lesion occurs after the learning process has finished.
In this case, the student network can learn the training
set using its full capabilities, as there are no constraints
on the number of nonvanishing weights during the learn-
ing stage. The equilibrium properties of the ensemble of
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networks or weight configurations {J;} so generated are
obtained by setting « = 1 in the equations for the or-
der parameters, training and generalization errors given
in Sec. ITI. Of course, both annealed and quenched di-
lution give the same results for kK = 1. A particularity
of the noiseless (v = 1), nondiluted (k = 1) limit is the
existence of a continuous transition to a regime of per-
fect generalization at o = 1 [3,6,9]. Thus, for a > 1
the unique ground state (global minimum) of the train-
ing energy is {Ji = J?}. A similar phenomenon occurs in
the Boolean binary perceptron, though the transition is
discontinuous in that case [29]. We note that, in the real-
weights Boolean perceptron, the regime of perfect gener-
alization is reached only in the limit @« — oo [8]. The
question we address in this section is how the training
and generalization errors are affected by setting to zero
(1 — k)N components of the weight configurations that
minimize F,—;. As the results must necessarily depend
on the criterion we employ to choose which weights to
eliminate, we consider in the following three rather nat-
ural possibilities: only the smaller weights are deleted,
only the larger weights are deleted and the weights are
deleted randomly.

A. Deletion of the smaller weights

Once the learning stage is finished, we set to zero all
weights J; such that | J; | < w, where the threshold w is
chosen so as to guarantee that the fraction of nonvanish-
ing weights equals k. The performances of the damaged
network in realizing the training set and a new input-
output pair are measured by the training and generaliza-
tion errors defined as

¢ = Jim ((B,({ZO( Ll —w)D)r)), (42
where E and E, are given in (2.5) and (2.6), respec-
tively. Here ©(x) = 1 if z > 0 and 0 otherwise, and
the thermal average (), is taken with the Boltzmann
weights exp [—BE.=1 ({J:})], as discussed in the begin-
ning of this section. The relation between the threshold
w and the connectivity « can be obtained by calculating
explicitly the fraction of weights such that | J; | > w, i.e.,

((ageaa) )

The evaluation of the averages in Egs. (4.1), (4.2), and
(4.3) is rather involved but can be carried out straight-
forwardly by following the same procedure mentioned in
Sec. II for the calculation of the average generalization
error. Performing the calculations we find the following
simple equation relating w and «:

(4.3)

K= 2/ Dz, (4.4)
w/vVQ1

where @, the squared norm of the weight configurations
that minimize the cost function E._1, is obtained by set-
ting x = 1 in Egs. (3.14) or (3.21) depending on whether
a > 1 or a < 1, respectively. The result for the average
training error is

- A (1 =72
e/ =t 2A" (1—AK+0——L7—Q)), a<1

l—«

1
L g A 4.1
= dim ((B(EO (%[ - )}))r) (1) (45)
and and
J
a2 (1=72A.) —af14 A (1 =292)] 4+ An (2= A) (1 —~2
Tl Uk )~ el (1= 2+%)] ( =7 o (4.6)
20 (a — 1)
[
In the limit of large «, this last equation can be written which, for large a can be written as
as 1—~2A A, (1_72)
8 K -2
. 1—72A, A.(1—792 _ €g/M = + + O(a™%). (4.10)
/M = 5 - (2a ) +0(a™?). (4.7 2 2a
The average generalization error is given by
B. Deletion of the larger weights
op = A a1l - A (1-297)] +1 <1
69/ - 2(1-a) ’ = In this case we set to zero all weights J; such that
48 | J; | > w, where again w must be chosen so as to guar-
(4.8) antee that the fraction of nonvanishing weights equals «.
and The definitions of the average training and generalization
1 1 . . .
) errors, €; and €y, are obtained simply by replacing ©(z)
et /M = 1 4 Ax (1 —~%a) o>1 (4.9) by 1 — ©(z) in Egs. (4.1) and (4.2). As a result, the
g T2 2(a—1) ’ ) equations for €} and €, are given by their counterparts in
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the case of the deletion of the smaller weights with A,
replaced by 1 — A;_,, where

oo

A =2 Dz 2? (4.11) -
Al
and A;_, is the unique solution of
1—k=2 Dz. (4.12)
Al

A numerical analysis of these equations yields A, > k >
1—A_..

C. Random deletion of weights

Finally, we consider now the third possibility of delet-
ing weights after learning, which consists of setting to
zero (1 — k)N randomly chosen weights J;. The training
and generalization performances of the damaged network
are measured, respectively, by the quantities
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Thus, the dilution constraint is fulfilled in the average
only. In the thermodynamic limit, however, the probabil-
ity that this constraint is violated can be safely neglected.
As E,—1, which is implicit in the thermal average, does
not depend on c;, the averages over these random vari-
ables can be readily performed yielding

o= Jim << <E (=) = 3 anll = WINQ >T >>

(4.16)
and
& = Jim <<<%(M+KQ—2'W;R)>T>>, (4.17)

where @Q, R, and M are given in (2.9), (2.10), and (2.11),

. 1 .. respectively. The evaluation of the quenched (()) and the
&= ON ﬁll,n;o (CCE {edi}))r D) (413)  thermal ()1 averages follows the same procedure men-
tioned before. The result for the average training error
and is
€ = Jim ({(EBg ({eidi}) Yp ) Vs (4.14)
, 1-k ak (1 —y2%a)
where ()_ stands for the quenched average over the sta- & /M = 2 I1-rx+ T i ) © <1
tistically independent random variables c; distributed ac-
cording to (4.18)
P (c;)) =k 6(ci — 1)+ (1 — k) 6(cq). (4.15) and
J
a?(1—ryt)—a[l+s(1-29))]+x(2—-k) (1 —~2
L By R ) R T T s R o)
2a (a—1)
[
which, for large a, becomes of the smaller weights: the description of the random
2 2 cutting of weights could be obtained by simply replac-
& /M = 1—9", & (1-7%) +0(a™?). (4.20) ing A, by k in the equations describing the deletion of
t 2 2a the smaller weights. Another point worth emphasizing
The average generalization error is given by 18 _th?_’*t for vy =1 am? a > 1 the generahzatmn error
coincides with the training error, being independent of
. ?yk—al-r(1-29y%)] +1 < a. This is true for all types of dilution after learning.
€g/M = 2(1—a) o=l In fact, this result was expected since in this regime the
(4.21) global minimum {Ji = J?} does not depend on a.
and V. ANALYSIS OF THE RESULTS
& /M = 1 + K (1 - '72(1) a1, (4.22) A.peculiarity of the linear percep.tron is the occurrence
9 2 2(a—1) of divergences at the storage capacity a, of the network.
h i behavior i In fact, as signaled by the divergence of @, some weights
whose asymptotic bebavior is become arbitrarily large at a., and any external dis-
11—k K (1 _ 72) turbance, whether due to noise or dilution, may cause
€g/M = 3 + 2o + O(a™?). (4.23) the training and generalization errors to diverge. In the

We note again the remarkable formal similarity between
the above equations and the ones describing the deletion

case of dilution before learning, the training error is al-
ways finite; the generalization error, however, diverges
at @« = «, for all v and k < 1. In the case of dilu-
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tion after learning, both the training and generalization
errors diverge at a = 1, the storage capacity of the non-
diluted network, for v < 1 and x < 1. We note that a. is
independent of the noise parameter . In fact, the stor-
age capacity of the linear perceptron is solely determined
by the breakdown of the linear independence condition
between the rows and columns of the P x N matrix com-
posed of the random variables S!. As the choice of v < 1
does not affect the statistical independence of the random
variables Sf, this parameter cannot change the value of
a.. Since the only effect of the variance of the weights of
the teacher network is to rescale the training and gener-
alization errors, we will set M = 1 in the following.

The minimal training error is, of course, always ob-
tained for the annealed dilution, since in this case the
deleted weights are chosen so as to attenuate the effect
of dilution on that error. The comparison between the
training errors obtained for different types of dilution for
the noiseless (y = 1) case is presented in Figs. 2 and 3
for @ = 0.5 and o = 2.0, respectively. We note that the
deletion of the larger weights is the type of dilution that
causes more damage to the training error.

In the noiseless case and for @ > 1, the deletion of
the smaller weights actually yields the optimal general-
ization performance, since in this case the generalization
function Eq. (2.6) is rewritten as

By ({5 = 72}) = 3 S (99,

where the summation is restricted to the set of deleted
weights only. Thus, in order to minimize £, we must
minimize the norm of the deleted weights, which can be
achieved by deleting the smaller weights. For a < 1,
however, we were unable to prove the optimality of the
deletion of the smaller weights as the microscopic con-
figurations of the global minima are not known. Never-
theless, at least for the types of dilution we have consid-

(5.1)
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0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 2. Training error ¢; as a function of the connectivity

& for the annealed dilution (solid curve), quenched dilution
(long broken curve), deletion of the smaller weights (chain
curve), deletion of the larger weights (short broken curve),
and random deletion of weights (dotted curve). The parame-
ters are v = 1 and a = 0.5.
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FIG. 3. Training error €; as a function of the connectivity

k for v = 1 and a = 2.0. The convention is the same used in
Fig. 2.

ered, the strategy of deleting the smaller weights yields
the best generalization performance. This optimality is
illustrated in Figs. 4 and 5, where the generalization er-
ror is shown as function of k¥ for = 0.5 and a = 2.0,
respectively.

Figures 2-5 allow us to compare the effect of dilution
on the storage performance with the effect on the gen-
eralization ability of the perceptron. While the dilution
after learning affects the training and the generalization
errors in a similar way, the effect of dilution before learn-
ing is much more pronounced on the generalization error,
which actually diverges at a., than on the storage per-
formance.

In the noisy case v < 1, the strategy of deleting the
smaller weights after learning no longer yields the opti-
mal generalization performance. In particular, we find
€5 >ep >e if 2-1/4%° < a < 1/4?, otherwise the
inequalities are simply reversed. Thus, we are lead to

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Generalization error €4 as a function of the con-
nectivity k for v = 1 and a = 0.5. The divergences occur at
k£ = 0.12 and & = 0.5 for the annealed and quenched dilu-
tions, respectively. The convention is the same used in Fig. 2.
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FIG. 5. Generalization error €4 as a function of the con-
nectivity x for ¥y = 1 and o = 2.0. The convention is the same
used in Fig. 2.

the rather odd conclusion that the larger the noise, the
more important the role of the small weights. When the
network is near its storage capacity a = 1 the gener-
alization performance is more sensitive to the deletion
of the smaller weights, even in the case of small noise
v = 1. These results are illustrated in Figs. 6 and 7
which present the training and generalization errors, re-
spectively, as functions of a for v = 0.8 and « = 0.5.
Independently of the type of dilution, we find ¢, = 1/2
for & = 1/42%. The curves of the generalization error for
the dilution after learning intersect again at o = 2—1/~2,
corresponding to €, = 1/2. It is interesting to note that
for 2 — 1/94%2 < a < 1/42 the diluted network (k < 1)
generalizes better than the nondiluted one (x = 1), inde-
pendently of the magnitude of the deleted weights.

In the asymptotic regime, a — oo, the optimal gen-
eralization error must tend, from above, to the optimal
training error, which we know to be given by the annealed

0.8

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 6. Training error €; as a function of the training set
size a for v = 0.8 and k = 0.5. The convention is the same
used in Fig. 2.
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2.0

0.0 0.5 1.0 15 2.0 2.5

FIG. 7. Generalization error ¢4 as a function of the train-
ing set size o for v = 0.8 and k = 0.5. The divergences occur
at o = 0.93 and a = 0.5 for the annealed and quenched dilu-
tions, respectively. The convention is the same used in Fig. 2.

dilution €™ — (1 — 'yzAn) /2. This result, however, co-
incides with the training error obtained for the deletion
of the smaller weights Eq. (4.7), so that both types of
dilution give the correct leading term of the optimal gen-
eralization error, though €; tends to this limiting value
faster than €g™".

VI. CONCLUSION

In this paper we have investigated the effects of dif-
ferent types of dilution of synaptic weights on the learn-
ing capability of the linear perceptron. Although the
problem of lesioning a neural network before the learning
process takes place has received considerable attention
recently [10, 16, 23], the problem of lesioning the network
after the learning stage has finished has remained prac-
tically untouched. The main motivation for this type of
analysis is the identification of the components whose de-
struction may affect more severely the generalization per-
formance of the neural network. In the case of the linear
perceptron, the relative importance of the roles played by
weights of different magnitudes depends on the training
set size a and on the noise parameter v. More specifi-
cally, the generalization performance is more sensitive to
deletion of the smaller weights if 2 — 1/9% < a < 1/42.
Outside this range, the larger weights give the more im-
portant contribution to the generalization performance.
It would be interesting to know whether these results
hold, at least qualitatively, for the real-weights Boolean
perceptron as well.

For finite training set sizes «, the widespread strategy
of choosing the weights to be deleted so as to lessen the
effect of the lesion on the training error (annealed dilu-
tion) does not yield the best generalization performance.
In the noiseless case, for instance, it is overcome by the
deletion of the smaller weights after learning, which ac-
tually yields the optimal performance for a > 1.

Besides the local stability of the replica-symmetric so-
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lution, another important advantage of the linear percep-
tron as compared with the Boolean perceptron is the pos-
sibility of solving analytically the saddle-point equations
and hence obtaining neat equations for the training and
generalization errors. To conclude, we should mention
that the exactness of the results presented in this paper
depends on the global stability of the replica-symmetric
solution. To prove this type of stability we should, for in-
stance, show that the replica symmetric is the unique so-
lution to the full replica-symmetry breaking saddle-point
equations. We are content, however, with the proof of
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the local stability of our solution. Additional evidence
for the exactness of our results is provided by the rigor-
ous solution of a very similar model, the spherical model
of a spin glass, which was shown to coincide with the
replica-symmetric solution [30].
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